
40 The Delphi Magazine Issue 58

Dragging And Dropping
Part 3: Windows
by Brian Long

Over the last two months we
have investigated VCL sup-

port for in-application drag and
drop. This month we branch out
and look at inter-application drag
and drop. This focuses on how to
make a Delphi application act as a
recipient for information dragged
from other Windows applications.

It is also possible to act as the
source of a drag operation, so your
users can drag information to
other applications, but space
restricts us to looking at initiating
drag operations this time.

The Old 16-Bit Windows Way
Windows 3.x supported a mecha-
nism that existed to allow users to
select one or more files in File
Manager, drag them over your
application and drop them on one
of your application windows. This
mechanism is also supported in
32-bit Windows in the same way,
allowing you to accept files
dragged from Windows Explorer.

To tell Windows that one of your
windows should be treated as a
drop target, you pass its window
handle to the DragAcceptFiles API.
This routine also takes a Boolean
acceptance parameter. You pass in
True to specify your window will
accept files dropped onto it, or
False to discontinue accepting
dropped files before terminating.

wm_DropFiles
Assuming you have told Windows
that you have a window that will
accept dropped files, then when
the user does drop one or more
files onto your window (or one of
its children) a wm_DropFiles mes-
sage is sent to it. If an application
processes this message it should
set the Result field to 0 to inform
Windows not to do its own default
processing.

The WParam value sent with this
message contains the only useful
information (LParam is undefined),
which is a memory handle to a
drop structure. The Microsoft doc-
umentation typically describes

this as an internal drop structure,
since in 16-bit Windows it was
undocumented. However, the
Win32 SDK provides us with the
definition of the DROPFILES struc-
ture, which can be referred to as
TDropFiles in Delphi.

The record, as defined in the
ShlObj unit and shown in Listing 1,
holds information on the location
of the cursor when the files were
dropped as well as the list of
filenames that were dropped.

Given this information, you
could use standard Windows
memory management code to
access this record in the message
handler. However, instead of ana-
lysing the data ourselves, we are
advised to use a number of dedi-
cated APIs. This gets over the lack
of definition of the record in 16-bit
Windows and also the issue of
catering for Unicode characters,
should they come up.

DragQueryPoint takes a memory
handle to a dropped file structure
as well as a pass by reference
TPoint parameter. The point
record is filled with the drop point
information from the dropped file
structure.

DragQueryFile is designed to
return information about one of
the dropped files. It takes a file
index number (which file to return
information about) along with a
character buffer and buffer size
and fills the buffer with the file
name and path. If no buffer is sup-
plied, the function returns the size
of the required buffer. A file index
of -1 causes the function to return
the number of dropped files.

Finally, DragFinish frees the
memory occupied by a dropped
file structure.

With this information, you can
write code that lists all dropped
files in a listbox, as shown in List-
ing 2. This code can be found in the
OldDrag.Dpr project on the disk.

PDropFiles = ^TDropFiles;
_DROPFILES = record
pFiles: DWORD; { offset of file list }
pt: TPoint; { drop point (client coords) }
fNC: BOOL; { is it on NonClient area and pt is in screen coords }
fWide: BOOL; { WIDE character switch }

end;
TDropFiles = _DROPFILES;
DROPFILES = _DROPFILES;

procedure TForm1.WMDropFiles(var Msg: TWMDropFiles);
var
Pt: TPoint;
Count, Loop: Integer;
Buf: array[0..MAX_PATH] of Char;

begin
try
Msg.Result := 0;
DragQueryPoint(Msg.Drop, Pt);
Caption := Format('Files dropped at (%d,%d)', [Pt.X, Pt.Y]);
Count := DragQueryFile(Msg.Drop, Cardinal(-1), Buf, SizeOf(Buf));
for Loop := 0 to Pred(Count) do begin
DragQueryFile(Msg.Drop, Loop, Buf, SizeOf(Buf));
lstFiles.Items.Add(StrPas(Buf))

end
finally
DragFinish(Msg.Drop)

end
end;

➤ Listing 2: Accessing dropped file information.

➤ Listing 1: TDropFiles record.

June 2000 The Delphi Magazine 41

This project works in all Windows
versions of Delphi.

The Newer, Win32 COM Way
Windows 95 introduced a more
open (and involved) mechanism
for inter-application drag and
drop, which allows you to drag
information in numerous formats
(simultaneously). It is based
around COM and involves part of
the OLE Windows subsystem.

To operate successfully you
must initialise OLE before calling
any of the routines and uninitialise
it afterwards, with calls to Ole-
Initialize and OleUninitialize
respectively. Also, an application
calls RegisterDragDrop to register a
window as a drop target. Then,
when done, RevokeDragDrop stops it
being a drop target.

IDropTarget
When registering a window as a
drop target you pass in the window
handle and a reference to an
IDropTarget interface whose meth-
ods will be called to control the
drag/drop operation. IDropTarget
can be implemented in any object,
not necessarily the one that is reg-
istered as a drop target window
(see the later comments about
Delphi 3 forms and COM). You can
see IDropTarget in Listing 3.

When the mouse is dragged into
a registered drop target window
IDropTarget.DragEnter is called.
This allows the drag operation to
be accepted or cancelled and
allows the cursor to be customised
to give user feedback. The dataObj
parameter is another interface ref-
erence, representing a data object
that can describe and render (if
need be) the data being dragged.
The grfKeyState parameter gives
information on the standard shift
keys that are held down (much like
the Shift parameter in OnKeyDown/
Up and OnMouseDown/Move/Up event
handlers). Pt specifies the mouse
cursor location, whilst dwEffect is a
var parameter that can be used to
cancel the drag or specify the
effect of the drag (link, move or
copy the data).

As the mouse is moved around
the window, IDropTarget.DragOver
is repeatedly called to provide user

feedback and to allow the drag
operation to potentially be
customised further. For example, if
the user changes which of the shift
keys are pressed, the effect of the
drag can be modified.

If the mouse is moved out of the
window, or the drag operation is
cancelled, IDropTarget.DragLeave
is called. Here you must remove
whatever user feedback you have
set up and drop any references to
the data object passed in
IDropTarget.DragEnter.

Finally, if the item is dropped in
the window (the mouse cursor is
released) IDropTarget.Drop is
called. Here you incorporate the
dragged source data into the target
window however is appropriate
and then do the same tidying up as
in IDropTarget.DragLeave.

IDataObject
The data object (as represented by
the IDataObject parameter in the
DragEnter and Drop methods of
IDropTarget) warrants some
investigation now, as it is the
mechanism by which we initially
decide if we will accept the drop
and also how we get the dragged
information if it is dropped.

The primary job of the
IDataObject interface (see Listing
4) is to transfer data from a source

(the window that was dragged
from) to a target (the window that
was dropped on). The data can be
available in numerous formats,
each format being stored in its own
storage medium. Optionally, the
data might be rendered for a
specific target device.

The data object allows the drop
target to query it to see if a
requested data form is available in
a specified storage medium. The
drop target can also enumerate all
the supported formats, and can be
notified of changes in the data by
setting up an advisory sink (the
drop target application can imple-
ment the IAdviseSink interface,
called when things change).

Clipboard Formats
As I explored the subject of data
objects, I was surprised to find that
there was a lot in common
between OLE drag and drop and
the clipboard. In particular, a data
object can be placed on the clip-
board thereby making all the data
formats managed by the data
object available from the clip-
board.

If you think about it, this makes a
certain amount of sense, because
you can drag potentially complex
data between applications in one
motion, or alternatively copy it

IDropTarget = interface(IUnknown)
['{00000122-0000-0000-C000-000000000046}']
function DragEnter(const dataObj: IDataObject; grfKeyState: Longint;
pt: TPoint; var dwEffect: Longint): HResult; stdcall;

function DragOver(grfKeyState: Longint; pt: TPoint; var dwEffect: Longint):
HResult; stdcall;

function DragLeave: HResult; stdcall;
function Drop(const dataObj: IDataObject; grfKeyState: Longint; pt: TPoint;
var dwEffect: Longint): HResult; stdcall;

end;

IDataObject = interface(IUnknown)
['{0000010E-0000-0000-C000-000000000046}']
function GetData(const formatetcIn: TFormatEtc; out medium: TStgMedium):
HResult; stdcall;

function GetDataHere(const formatetc: TFormatEtc; out medium: TStgMedium):
HResult; stdcall;

function QueryGetData(const formatetc: TFormatEtc): HResult; stdcall;
function GetCanonicalFormatEtc(const formatetc: TFormatEtc; out formatetcOut:
TFormatEtc): HResult; stdcall;

function SetData(const formatetc: TFormatEtc; var medium: TStgMedium;
fRelease: BOOL): HResult; stdcall;

function EnumFormatEtc(dwDirection: Longint; out enumFormatEtc:
IEnumFormatEtc): HResult; stdcall;

function DAdvise(const formatetc: TFormatEtc; advf: Longint; const advSink:
IAdviseSink; out dwConnection: Longint): HResult; stdcall;

function DUnadvise(dwConnection: Longint): HResult; stdcall;
function EnumDAdvise(out enumAdvise: IEnumStatData): HResult;
stdcall;

end;

➤ Listing 3: The IDropTarget interface.

➤ Listing 4: The IDataObject interface.

42 The Delphi Magazine Issue 58

into the clipboard and then paste it
into another application using
either the Edit | Paste or Edit
Paste Special... menu items. The
Paste Special dialog lists all the
supported data formats that are in
the clipboard.

To get an idea of what formats
are used by some of the more
common applications, I have writ-
ten a program to help (on the disk
as ClipFmtList.dpr). This applica-
tion knows how to query all the for-
mats maintained by a data object.
It has two listviews on it.

The right-hand listview is regu-
larly populated by a timer and
shows what data formats are
available in the clipboard at any
given time. The code asks Win-
dows to return a reference to a
data object that contains the clip-
board data in all its formats. Even if
no application has placed a data
object in the clipboard, Windows
can manufacture one if asked.

The left-hand listview is regist-
ered as a drop target and lists all
the formats available when
information is dragged into it. It
gains access to the drag object in
charge of the operation’s data and
iterates through it.

Figure 1 shows the program after
some HTML has been copied into
the clipboard from within Internet
Explorer and a block of text from
Word has been dragged across the
left listview. You can see a few

common formats used by both
Internet Explorer and Word, such
as CF_TEXT, CF_UNICODETEXT and
Rich Text Format. You might also
see various other clipboard for-
mats, unique to the application
manipulating the clipboard or data
object. For example, Word has a
data format called Woozle.

The formats listed as identifiers
with a CF_ prefix are standard Win-
dows clipboard formats which are
always available. Other formats
are custom clipboard formats that
are initialised by various applica-
tions. Any application can use any
of these formats by passing the
exact same clipboard format string
(of which Rich Text Format is an
example) along to the
RegisterClipboardFormat function.

The function returns a numeric
value which uniquely identifies
that clipboard format within the
current Windows session. The
numbers seen after the clipboard

formats in Figure 1 are these clip-
board format identifiers. You can
see that the standard formats all
have very low values, whereas
custom formats seem to use values
over 50,000. Next to each clip-
board format is information about
which medium type the data is
stored in. Typical values indicate
global memory handles, IStorage
and IStream interfaces, and a
memory handle to a TMetaFilePict
record.

The program’s implementation
is straightforward. Each timer tick
the program asks the clipboard for
a data object that can manage the
data therein. This object is passed
to a utility routine called List-
Formats which takes a data object
and also a TListItems object (the
Items property of a listview).
ListFormats then uses the data
object’s EnumFormatEtc method to
iterate across all data formats and
add their details to the listview.

Each supported format is repre-
sented by a TFormatEtc record (in
the Win32 SDK help this is listed as
the original C FORMATETC structure)
which contains the clipboard
format (a TClipFormat field called
cfFormat) and the storage medium
type (an integer called tymed).

Other fields allow a format to be
targeted at a specific device, and
specify how much detail should be
used, but these do not seem to be
used very often. ListFormats uses
some helper routines to take a clip-
board format and turn into the rep-
resentative string, and do the same
for a storage medium type value.
Listing 5 shows the code discussed
so far.

The other part of this utility
shows what clipboard formats are
available through a COM drag and

➤ Figure 1: A display of clipboard formats available through drag and
drop, and through the clipboard.

procedure TDataFormatListForm.ListFormats(List: TListItems;
DataObj: IDataObject);

var
EFE: IEnumFormatEtc; //enumeration interface
FE: TFormatEtc; //Clipboard format, storage medium type etc.
CElt: Longint; //count of elements returned
Item: TListItem;

begin
OleCheck(dataObj.EnumFormatEtc(DATADIR_GET, EFE));
List.BeginUpdate;
try
List.Clear;
CElt := -1;
while CElt <> 0 do begin
OleCheck(EFE.Next(1, FE, @CElt));
if CElt > 0 then begin
Item := List.Add;
Item.Caption := ClipFormatToStr(FE.cfFormat);
Item.SubItems.Add(TyMedToStr(FE.tymed));

end
end

finally
List.EndUpdate

end;
end;
procedure TDataFormatListForm.TimerTimer(Sender: TObject);
var DataObj: IDataObject;
begin
if Succeeded(OleGetClipboard(DataObj)) then
ListFormats(lstClipFmt.Items, DataObj)

end;

➤ Listing 5: Listing all available clipboard formats via a data object.

44 The Delphi Magazine Issue 58

drop operation. This requires
implementing the four methods of
IDropTarget. This is simple in the
case of DragOver and DragLeave,
which need do nothing in this case
apart from return a success value.

Drop does much the same,
although it calls DragLeave to take
advantage of any tidying up that
could be done there. All this leaves
is DragEnter, which passes the drag
object parameter to ListFormats
again to get all the information on
the screen.

Delphi 3 Issues
Listing 6 shows the gory details.
Notice the drag/drop registration
and unregistration being per-
formed in the OnCreate and
OnDestroy event handlers respec-
tively. This code works well in
Delphi 4 and later but causes a
problem with Delphi 3. When
implementing the IDropTarget
interface in the form, you might
notice that I only implemented the
IDropTarget methods. I did not
implement the methods of
IUnknown, the interface that
IDropTarget is based on.

This is because TForm inherits
from TComponent, which imple-
ments the IUnknownmethods (along
with IDispatch methods). It imple-
ments the methods, but the defini-
tion of TComponentdoes not claim to
implement IUnknown (by having

IUnknown in the brackets in the first
line of the class definition). When
you implement an interface in a
form and specify that the form sup-
ports your interface and IUnknown,
the already existing IUnknown
method implementations will be
automatically used.

The problem arises because of
what these methods do. In Delphi 4
and later, they check whether the
VCLComObject property has been
assigned a value (by examining the
FVCLComObject data field). As List-
ing 7 shows, if no COM object inter-
face has been assigned to this
property, no reference counting is
performed, otherwise, the COM
object’s reference counting
methods are employed.

Listing 8 shows that Delphi 3
code assumes that VCLComObject
will have been assigned. If it hasn’t
been assigned (our code does not

assign it a value), or the methods
have not been re-implemented, the
code generates an Access Viola-
tion. The code on the disk includes
implementations of the IUnknown
methods for Delphi 3 users to
circumvent the failure.

Another solution would have
been to implement IDropTarget in
another object. This would have
avoided Windows trying to talk to
the form using COM, triggering the
problem in the first place. Alterna-
tively you could implement
IUnknown in another object and
assign the object’s IUnknown inter-
face reference to the VCLComObject
property (after typecasting it to a
pointer).

VCLComObject is used to allow a
component to support COM, albeit

TDataFormatListForm = class(TForm, IUnknown, IDropTarget)
lstDragFmt: TListView;

...
private
//IDropTarget
function DragEnter(const dataObj: IDataObject;
grfKeyState: Longint; pt: TPoint;
var dwEffect: Longint): HResult; stdcall;

function DragOver(grfKeyState: Longint; pt: TPoint;
var dwEffect: Longint): HResult; reintroduce; stdcall;

function DragLeave: HResult; stdcall;
function Drop(const dataObj: IDataObject;
grfKeyState: Longint; pt: TPoint;
var dwEffect: Longint): HResult; stdcall;

...
end;
...
function TDataFormatListForm.DragEnter(
const dataObj: IDataObject; grfKeyState: Integer;
pt: TPoint; var dwEffect: Integer): HResult;

begin
ListFormats(lstDragFmt.Items, dataObj);
Result := S_OK

end;
function TDataFormatListForm.DragLeave: HResult;
begin
Result := S_OK

end;
function TDataFormatListForm.DragOver(grfKeyState: Integer;
pt: TPoint; var dwEffect: Integer): HResult;

begin
Result := S_OK

end;
function TDataFormatListForm.Drop(const dataObj:
IDataObject; grfKeyState: Integer; pt: TPoint;
var dwEffect: Integer): HResult;

begin
DragLeave; //Call routine that potentially does tidying up
Result := S_OK

end;
procedure TDataFormatListForm.FormCreate(Sender: TObject);
begin
OleCheck(RegisterDragDrop(lstDragFmt.Handle, Self));
//Make sure timer ticks immediately
if Assigned(Timer.OnTimer) then
Timer.OnTimer(Timer)

end;
procedure TDataFormatListForm.FormDestroy(Sender: TObject);
begin
OleCheck(RevokeDragDrop(lstDragFmt.Handle))

end;
...
initialization
OleCheck(OleInitialize(nil))

finalization
OleUninitialize

end.

➤ Listing 6: Implementing
IDropTarget. function TComponent.QueryInterface(const IID: TGUID; out Obj): HResult;

begin
if FVCLComObject = nil then begin
if GetInterface(IID, Obj) then
Result := S_OK

else
Result := E_NOINTERFACE

end else
Result := IVCLComObject(FVCLComObject).QueryInterface(IID, Obj);

end;
function TComponent._AddRef: Integer;
begin
if FVCLComObject = nil then
Result := -1 // -1 means no ref. counting is taking place

else
Result := IVCLComObject(FVCLComObject)._AddRef;

end;
function TComponent._Release: Integer;
begin
if FVCLComObject = nil then
Result := -1 // -1 means no ref. counting is taking place

else
Result := IVCLComObject(FVCLComObject)._Release;

end;

➤ Listing 7: Delphi 4’s IUnknown
methods in TComponent.

June 2000 The Delphi Magazine 45

by delegating IUnknown and
IDispatch calls to another object.

A Better Example
Having spent some time looking at
a simple application that interacts
with the COM drag/drop system,
let’s now look at a more involved
example. The COMDragDrop.dpr
project works with Delphi 3 and
later and acts as a fairly generic
drop target.

With the program running, you
can drag data from any suitable
application onto it and it displays
the data in as many ways as possi-
ble, taking into account all the
available clipboard formats. This is
done using a page control, with one
page per supported format. Only
the pages for available formats
become visible when data is
dropped onto the form. Figure 2
shows the result.

The architecture of the program
is like this. A class called TData-
Object is designed to provide easy
access to the data in a data object.
An IDataObject interface reference
is passed to the TDataObject con-
structor to start it off.

TDataObject serves three pur-
poses. Firstly, it has a ListFormats

method which enumerates all the
supported data formats and popu-
lates a listview with them. The
implemention is similar to that in
the ClipFmtList.dpr project.

Secondly, the constructor initial-
ises a set property called Data-
Formats. This allows the rest of the
program to easily identify which
formats are available in the data
object. An enumerated type is used
to define the values that can go in

the set property. These values are
easier to use than the original clip-
board formats. To cover as many
data formats as possible, the code
registers some of the non-
standard, but common, clipboard
formats, such as Rich Text Format.

Rather than enumerating the
data formats again, DataFormats is
set up by querying the data object
for each format known to the
object. Any that are indicated as

function TComponent.QueryInterface(const IID: TGUID; out Obj): Integer;
begin
Result := IVCLComObject(FVCLComObject).QueryInterface(IID, Obj);

end;
function TComponent._AddRef: Integer;
begin
Result := IVCLComObject(FVCLComObject)._AddRef;

end;
function TComponent._Release: Integer;
begin
Result := IVCLComObject(FVCLComObject)._Release;

end;

➤ Listing 8: Delphi 3’s IUnknown methods in TComponent.

type
//When adding to this set, update the GetDataFormats
//function as well
TDataFormat = (dfText, dfHDrop, dfDIB, dfBitmap,
dfPalette, dfWMF, dfEMF, dfRTF, dfFileName,
dfShellIDList, dfObjectDescriptor, dfLinkSrcDescriptor);

TDataFormats = set of TDataFormat;
TDataObject = class
private
FDataObject: IDataObject;
FFormatEtc: TFormatEtc;
FDataFormats: TDataFormats;
//Stores data object's data formats in FDataFormats
procedure GetDataFormats;
procedure SetupFormatEtc(ClipFmt: TClipFormat;
TyMed: Longint);

procedure GetDescriptor(SM: TStgMedium; List: TStrings);
public
constructor Create(DataObj: IDataObject);
procedure GetDataAsBitmap(Bmp: TBitmap);
procedure GetDataAsDIB(Bmp: TBitmap);
procedure GetDataAsHDrop(FileList: TStrings);
procedure GetDataAsWMF(MetaFile: TMetaFile);
procedure GetDataAsEMF(MetaFile: TMetaFile);
procedure GetDataAsPalette(Bmp: TBitmap);
procedure GetDataAsRTF(var Txt: String);
procedure GetDataAsText(var Txt: String);
procedure GetDataAsFileName(var Txt: String);
procedure GetDataAsShellIDList(IDList: TStrings);
procedure GetDataAsObjectDescriptor(ObjDescList:
TStrings);

procedure GetDataAsLinkSrcDescriptor(
LinkSrcDescList: TStrings);

procedure ListFormats(List: TStrings);
property DataFormats: TDataFormats read FDataFormats;

end; //TDataObject
constructor TDataObject.Create(DataObj: IDataObject);
begin
inherited Create;

FDataObject := DataObj;
GetDataFormats

end;
procedure TDataObject.SetupFormatEtc(ClipFmt: TClipFormat;
TyMed: Longint);

begin
FFormatEtc.cfFormat := ClipFmt;
FFormatEtc.tymed := TyMed;
FFormatEtc.ptd := nil;
FFormatEtc.dwAspect := DVASPECT_CONTENT;
FFormatEtc.lindex := -1;

end;
procedure TDataObject.GetDataFormats;
procedure GetDataFormat(ClipFmt: TClipFormat;
TyMed: Longint; Format: TDataFormat);

begin
SetupFormatEtc(ClipFmt, TyMed);
if FDataObject.QueryGetData(FFormatEtc) = S_OK then
Include(FDataFormats, Format);

end;
begin
FDataFormats := [];
GetDataFormat(CF_BITMAP, TYMED_GDI, dfBitmap);
GetDataFormat(CF_DIB, TYMED_HGLOBAL, dfDIB);
GetDataFormat(CF_HDROP, TYMED_HGLOBAL, dfHDrop);
GetDataFormat(CF_METAFILEPICT, TYMED_MFPICT, dfWMF);
GetDataFormat(CF_ENHMETAFILE, TYMED_ENHMF, dfEMF);
GetDataFormat(CF_PALETTE, TYMED_GDI, dfPalette);
GetDataFormat(CF_TEXT, TYMED_HGLOBAL, dfText);
GetDataFormat(CF_RTF, TYMED_HGLOBAL, dfRTF);
GetDataFormat(CF_FILENAME, TYMED_HGLOBAL, dfFileName);
GetDataFormat(CF_IDLIST, TYMED_HGLOBAL, dfShellIDList);
GetDataFormat(CF_OBJECTDESCRIPTOR, TYMED_HGLOBAL,
dfObjectDescriptor);

GetDataFormat(CF_LINKSRCDESCRIPTOR, TYMED_HGLOBAL,
dfLinkSrcDescriptor);

end;

➤ Listing 9: The IDataObject
wrapper class.

➤ Figure 2: The drag and drop application in action.

46 The Delphi Magazine Issue 58

being supported are added into the
DataFormats property. You can see
this happening in Listing 9, along
with one of the helper routines,
called SetupFormatEtc.

The final job for this object is to
provide simple ways to get the data
out of the data object, without
having to resort to API-level work
every time you need access to the
data. That is the reasoning behind
the various GetDataAsXXXXmethods
declared in Listing 9.

Accessing The Data
Notice that all these methods are
procedures, none are functions.
Whether data is returned through
a parameter or a function result is
fairly irrelevant in the case of
strings and integers etc. However,
things change when the informa-
tion being returned is an object.

If a function returns, say, a
TBitmap object, the function will
have typically created the object in
order to return it. This places an
immediate responsibility on the
caller to remember to destroy it. If
the calling code calls the function
and neglects to destroy the bitmap
object, you have an instant
resource leak.

It is typically better to define a
TBitmap parameter to the method.
The caller is then responsible for
obtaining the bitmap (possibly by
creating it) and destroying it if nec-
essary. A paired responsibility of
creating and destroying is much
better than a responsibility for just
destroying an object.

Each of these methods does
much the same job. It first sets up a
TFormatEtc record for the right clip-
board format and storage medium
that is expected. This record is

passed to the data object’s GetData
method. Assuming all went well,
the data object’s GetData method
will fill up a TStgMedium record (doc-
umented in the Win32 SDK help as
a STGMEDIUM structure).

GetDatawill have allocated space
for a copy of its data to be rendered
into the specified storage medium.
The TStgMedium variant record
holds a reference to the allocated
storage medium. As Listing 10
shows, this is either as a bitmap
handle, a global memory handle for
the data block, a global memory
handle for a TMetaFilePict record,
a handle to an enhanced Windows
metafile, a wide character file
name, or an IStream or IStorage
interface reference. The appropri-
ate field to use is dictated by the
storage medium type in the
TFormatEtc record as shown in
Table 1.

Once you have accessed the
data in the format that you under-
stand, there is a requirement to
free the resources used to keep
hold of the copy of the dragged
data. This is easily done by passing
the TStgMedium record to the
ReleaseStgMedium routine: this
examines the passed record and
takes appropriate steps to free the
memory occupied by the data.

Applications that act as drag
sources vary. Sometimes the drop
target is meant to free the data
space, sometimes the drag source
application is. Whichever way, the
implementation of ReleaseStg-
Medium makes sure the space is
freed by the correct party (see the
Win32 API help for more details).

The remaining piece of the
puzzle is to see how some different
data formats are laid out in their
respective storage media. Many of
these data formats are docu-
mented, for example on the MSDN

CD. Others, however, are undocu-
mented and are for internal appli-
cation use only. We’ll look at a few
of the project’s data access meth-
ods (as space allows) to get the
idea with some documented for-
mats, starting with a simple one.

CF_TEXT
When applications want to accept
text dragged from another applica-
tion, the GetDataAsText method is
called. This takes a string var
parameter which is meant to be
assigned the dragged text. Listing
11 shows the call to the routine as
well as its implementation.

Text data is stored in the clip-
board as a standard C string
(PChar) in a block of memory iden-
tified by a global memory handle. A
pointer to the memory block can
be obtained with a call to
GlobalLock (GlobalUnlock must be
called before finishing) and the C
string can be translated to a Pascal
string with a simple typecast.

CF_RTF
That was quite straightforward.
What about more interesting data
types? Rich text data is stored in
the same way as normal text, so
the GetDataAsRTF method looks
very familiar. However, a rich edit
control is quite capable of absorb-
ing data from a data object on its
own. All you need to do is pass the
data object interface reference to
the ImportDataObject method of
the rich edit control’s IRichEditOle
interface. The EM_GETOLEINTERFACE
message extracts the interface ref-
erence, as you can see in this
month’s The Delphi Clinic. Listing
12 shows what is necessary.

PStgMedium = ^TStgMedium;
tagSTGMEDIUM = record
tymed: Longint;
case Integer of
0: (hBitmap: HBitmap;

unkForRelease:
Pointer{IUnknown});

1: (hMetaFilePict: THandle);
2: (hEnhMetaFile: THandle);
3: (hGlobal: HGlobal);
4: (lpszFileName: POleStr);
5: (stm: Pointer{IStream});
6: (stg: Pointer{IStorage});

end;
TStgMedium = tagSTGMEDIUM;
STGMEDIUM = TStgMedium;

➤ Listing 10: The TStgMedium
record.

Storage Medium Type Constant Storage Medium Record Data Field

TYMED_HGLOBAL hGlobal

TYMED_FILE lpszFileName

TYMED_ISTREAM stm

TYMED_ISTORAGE stg

TYMED_GDI hBitmap

TYMED_MFPICT hMetaFilePict

TYMED_ENHMF hEnhMetaFile

➤ Table 1: Storage medium
correlation.

48 The Delphi Magazine Issue 58

Also, if the drag operation
causes the mouse to move over a
rich edit control, you will find it
already happy to accept the drop
operation. To get the code added
to the program doing the work, you
must ensure you drag onto some-
thing other than a rich edit.

CF_HDROP
When files are dragged from Win-
dows Explorer, as well as the
wm_DropFiles message being sent

to windows whose handles were
passed to DragAcceptFiles, win-
dows that were passed to
RegisterDragDrop are sent a data
object with the file list in the
CF_HDROP format. What this means
is that you can use the hGlobal field
of the storage medium record as a
HDROP, just as we did before. How-
ever, it is typical to rely on
ReleaseStgMedium to free the
memory, so the code in Listing 12
now becomes Listing 13.

CF_BITMAP and CF_PALETTE
Getting bitmaps and palettes from
the clipboard (or from clipboard
format) is quite straightforward
thanks to some handy routines in
the VCL’s Graphics unit. As Listing
14 shows, the TBitmap class defines
a method LoadFromClipboardFormat
and there’s a CopyPalette function.

CF_DIB
Whilst accessing a dragged bitmap
is straightforward, getting a
dragged DIB (device independent
bitmap) requires extra tinkering.
The DIB is accessible through a
global memory handle. The DIB
data is laid out like the majority of
a bitmap file, but without a file
header.

The code in Listing 15 sets up a
suitable bitmap file header using a
TBitmapFileHeader record (BITMAP-
FILEHEADER in the Windows API
help). This record is then written
to the beginning of a memory
stream and the DIB data is added
after it. The size of the DIB data can
be easily learned with GlobalSize.
With the memory stream now con-
taining a whole bitmap file, it is
suitable fodder for the TBitmap
class’s LoadFromStream method.

CF_ENHMETAFILE
Enhanced metafiles (EMFs) are
easy to pick up (Listing 16): you
just need to duplicate the metafile,
an easy job with the CopyEnh-
Metafile API, the metafile handle
can then be assigned to the Handle
property of a metafile object.

CF_METAFILEPICT
However, normal Windows
metafiles (WMFs) are trickier. The
TMetafile class in 32-bit Delphi
represents an enhanced metafile,
not a normal metafile. This means
that to get a dragged metafile into a
TMetafile object, the Windows
WMF must be converted into an
EMF. Listing 17 shows the steps.

Firstly GlobalLock is used to turn
the memory handle into a pointer
to a TMetaFilePict record (META-
FILEPICT in the Windows API help).
This record contains the metafile
handle along with size information
and the original mapping mode
(measurement system).

//Code from the form
var Txt: String;
...
if dfText in DataObject.DataFormats then begin
tsText.TabVisible := True; //Show the text page
DataObject.GetDataAsText(Txt); //Get the text
memText.Text := Txt; //Give text to the memo

end;
...
//Code from TDataObject
procedure TDataObject.GetDataAsText(var Txt: String);
var
SM: TStgMedium;
CTxt: PChar;

begin
SetupFormatEtc(CF_TEXT, TYMED_HGLOBAL);
OleCheck(FDataObject.GetData(FFormatEtc, SM));
try
CTxt := GlobalLock(SM.hGlobal);
try
Txt := String(CTxt);

finally
GlobalUnlock(SM.hGlobal);

end
finally
ReleaseStgMedium(SM)

end
end;

var
RichEditOle: IRichEditOle;

...
if dfRTF in DataObject.DataFormats then begin
tsRTF.TabVisible := True;
reRTF.Lines.Clear;
//Try and get richedit to deal with it...
if reRTF.Perform(EM_GETOLEINTERFACE, 0, LParam(@RichEditOle)) <> 0 then
RichEditOle.ImportDataObject(dataObj, 0, 0)

else begin
//If it can't do it yourself
DataObject.GetDataAsRTF(Txt);
reRTF.Lines.Text := Txt

end;
end;
...
var CF_RTF: TClipFormat;
procedure TDataObject.GetDataAsRTF(var Txt: String);
var
SM: TStgMedium;
CTxt: PChar;

begin
SetupFormatEtc(CF_RTF, TYMED_HGLOBAL);
OleCheck(FDataObject.GetData(FFormatEtc, SM));
try
CTxt := GlobalLock(SM.hGlobal);
try
Txt := String(CTxt);

finally
GlobalUnlock(SM.hGlobal);

end
finally
ReleaseStgMedium(SM)

end
end;
initialization
CF_RTF := RegisterClipboardFormat('Rich Text Format');

end.

➤ Listing 11: Accessing dragged text data.

➤ Listing 12: Extracting dragged rich text.

June 2000 The Delphi Magazine 49

A call to GetMetaFileBitsEx tells
you how big the metafile is, so you
can allocate a new buffer big
enough to hold a copy of it. This
duplicate metafile is then con-
verted to an enhanced metafile
with SetWinMetaFileBits, which
returns the enhanced metafile
handle.

Summary
Inter-application drag and drop
can be added to an application
without too much of a headache,
so long as you take it one step at a
time. Initialise the OLE library,

procedure TDataObject.GetDataAsHDrop(FileList: TStrings);
var
SM: TStgMedium;
Count, Loop: Integer;
Buf: array[0..1023] of Char;

begin
if not Assigned(FileList) then
Exit;

SetupFormatEtc(CF_HDROP, TYMED_HGLOBAL);
OleCheck(FDataObject.GetData(FFormatEtc, SM));
try
//How many files were dragged?
Count := DragQueryFile(SM.hGlobal,Cardinal(-1),nil,0);
FileList.BeginUpdate;
try

FileList.Clear;
//Loop through files
for Loop := 0 to Pred(Count) do begin
//Get filename
DragQueryFile(SM.hGlobal, Loop, Buf, SizeOf(Buf));
FileList.Add(Buf)

end
finally
FileList.EndUpdate

end
finally
ReleaseStgMedium(SM)

end
end;

➤ Listing 13:
Accessing dragged files. procedure TDataObject.GetDataAsBitmap(Bmp: TBitmap);

var SM: TStgMedium;
begin
if not Assigned(Bmp) then Exit;
SetupFormatEtc(CF_BITMAP, TYMED_GDI);
OleCheck(FDataObject.GetData(FFormatEtc, SM));
try
//Use a handy shortcut to load bitmp
Bmp.LoadFromClipboardFormat(CF_BITMAP, SM.hBitmap, 0);
if dfPalette in DataFormats then GetDataAsPalette(Bmp)

finally
ReleaseStgMedium(SM)

end
end;
procedure TDataObject.GetDataAsPalette(Bmp: TBitmap);
var SM: TStgMedium;
begin
if not Assigned(Bmp) then Exit;
SetupFormatEtc(CF_PALETTE, TYMED_GDI);
OleCheck(FDataObject.GetData(FFormatEtc, SM));
try
Bmp.Palette := CopyPalette(SM.hBitmap)

finally
ReleaseStgMedium(SM)

end
end;

➤ Listing 14: Accessing a dragged bitmap and palette.

50 The Delphi Magazine Issue 58

implement support for IDropTarget
and register the drop target
window. When data is dropped,
verify that the sort of data you are
looking for exists and then get it.
Once you are done with the
dragged data, you free it. Before
leaving the application, revoke
drag/drop support and close down
the OLE library.

The COMDragDrop.dpr project
on the disk supports more formats
than have been discussed in this
article. Figure 2 shows the project
running just after I dragged Figure
1 and its caption from a Microsoft
Word document onto it. The
metafile view is selected in the
screenshot.

References
I have found a great reference for
COM drag and drop (unfortunately
for me, I had done most of my
research for this article by the time
I found it).

Grahame Marsh has written a
series of articles on various drag/
drop COM issues in The Unofficial
Newsletter of Delphi Users (www.
undu.com). The series, which
started in Issue 31 of UNDU
(August 1998), covers many
aspects of this area that I am
unable to fit in. These include get-
ting the drop target to scroll as the
cursor is moved towards the edges
(like Windows Explorer), creating
Paste Special dialogs, many more
data formats and details on being a
drag source.

Brian Long is a UK-based freelance
consultant and trainer. He spends
most of his time running Delphi
and C++Builder training courses
for his clients, and doing problem-
solving work for them. Brian is at
brian@blong.com
Copyright © 2000 Brian Long
All rights reserved

➤ Listing 15: Accessing a dragged DIB.

➤ Listing 16: Getting a dragged enhanced metafile.

➤ Listing 17: Accessing a dragged Windows metafile.

procedure TDataObject.GetDataAsWMF(MetaFile: TMetaFile);
var
SM: TStgMedium;
MPPtr: PMetaFilePict;
MFBufSize: DWord;
MFBuf: Pointer;

begin
if not Assigned(MetaFile) then
Exit;

SetupFormatEtc(CF_METAFILEPICT, TYMED_MFPICT);
OleCheck(FDataObject.GetData(FFormatEtc, SM));
try
MPPtr := GlobalLock(SM.hMetaFilePict); //Get access to TMetaFilePict record
try
//How big is the metafile?
MFBufSize := GetMetaFileBitsEx(MPPtr^.hMF, 0, nil);
GetMem(MFBuf, MFBufSize); //Allocate sufficient buffer space
try
//Copy metafile to buffer
Win32Check(LongBool(GetMetaFileBitsEx(
MPPtr^.hMF, MFBufSize, MFBuf)));

//Generate enhanced metafile from buffer
MetaFile.Handle := SetWinMetaFileBits(
MFBufSize, MFBuf, 0, MPPtr^)

finally
//Free buffer
FreeMem(MFBuf)

end
finally
//Unlock memory handle
GlobalUnlock(SM.hMetaFilePict)

end
finally
ReleaseStgMedium(SM)

end
end;

procedure TDataObject.GetDataAsDIB(Bmp: TBitmap);
var
SM: TStgMedium;
Stream: TMemoryStream;
DIBPtr: Pointer;
DIBSize: DWord;
BMF: TBitmapFileHeader;

begin
if not Assigned(Bmp) then
Exit;

SetupFormatEtc(CF_DIB, TYMED_HGLOBAL);
OleCheck(FDataObject.GetData(FFormatEtc, SM));
try
DIBSize := GlobalSize(SM.hGlobal);
DIBPtr := GlobalLock(SM.hGlobal);
try
Stream := TMemoryStream.Create;
try
//Write a bitmap file header record
FillChar(BMF, sizeof(BMF), 0);
BMF.bfType := $4D42;
BMF.bfSize := SizeOf(BMF) + DIBSize;
Stream.Write(BMF, SizeOf(BMF));
Stream.Write(DIBPtr^, DIBSize); //Follow the BMF with the DIB
Stream.Position := 0;
Bmp.LoadFromStream(Stream) //Load the finished DIB into a TBitmap

finally
Stream.Free

end
finally
GlobalUnlock(SM.hGlobal)

end
finally
ReleaseStgMedium(SM)

end
end;

procedure TDataObject.GetDataAsEMF(MetaFile: TMetafile);
var
SM: TStgMedium;

begin
if not Assigned(MetaFile) then
Exit;

SetupFormatEtc(CF_ENHMETAFILE, TYMED_ENHMF);
OleCheck(FDataObject.GetData(FFormatEtc, SM));
try
MetaFile.Handle := CopyEnhMetafile(SM.hEnhMetaFile, nil)

finally
ReleaseStgMedium(SM)

end
end;

	The Old 16-Bit Windows Way
	wm_DropFiles
	The Newer, Win32 COM Way
	IDropTarget
	IDataObject
	Clipboard Formats
	Delphi 3 Issues
	A Better Example
	Accessing The Data
	CF_TEXT
	CF_RTF
	CF_HDROP
	CF_BITMAP and CF_PALETTE
	CF_DIB
	CF_ENHMETAFILE
	CF_METAFILEPICT
	Summary
	References

